organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl [(n-butylammonio)(2-hydroxyphenyl)methyl]phosphonate

Xiaoyan Zhang, Chunhua Ge, Xiangdong Zhang* and Qitao Liu

College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: xdzhang@lnu.edu.cn

Received 12 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.070; wR factor = 0.243; data-to-parameter ratio = 16.2.

The title compound, $C_{13}H_{22}NO_4P$, crystallizes as a zwitterion. The crystal packing exhibits $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, leading to the formation of a threedimensional supramolecular network. Three C atoms, one in the "Bu group and two in the Et group, are disordered over two positions; the site occupancy factors are ca. 0.8/0.2, 0.7/0.3 and 0.6/0.4.

Related literature

For related literature, see: Kurzak et al. (2000); Sawka-Dobrowolska (1985); Xu & Fu (2001); Xu et al. (2000); Zhang et al. (2005).

Experimental

Crystal data

C₁₃H₂₂NO₄P $M_r = 287.29$ Tetragonal, $I4_1/a$ a = 21.896 (3) Å c = 14.059 (2) Å V = 6740.4 (16) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.950, \ T_{\max} = 0.967$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	42 restraints
$wR(F^2) = 0.243$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
2986 reflections	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$
184 parameters	

Z = 16

Mo $K\alpha$ radiation

 $0.31 \times 0.25 \times 0.20 \text{ mm}$

3807 measured reflections

2986 independent reflections

1911 reflections with $I > 2\sigma(I)$

 $\mu = 0.17 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.027$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O4-H4\cdots O1^{i}$	0.82	1.90	2.651 (4)	153
$N1 - H1B \cdots O3^{ii}$	0.90	1.81	2.709 (4)	173
$N1 - H1A \cdots O1^{iii}$	0.90	1.92	2.766 (4)	156
Symmetry codes:	(i) $y + \frac{1}{4}, -x$	$x + \frac{5}{4}, z + \frac{1}{4};$	(ii) $y + \frac{1}{4}, -x +$	$\frac{7}{4}, -z + \frac{7}{4};$ (iii)

 $-y + \frac{7}{4}, x - \frac{1}{4}, -z + \frac{7}{4}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

This project is supported by the Natural Science Foundation of the Education Bureau of Liaoning Province (05 L159).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2022).

References

- Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kurzak, B., Kamecka, A., Kurzak, K., Jezierska, J. & Kafarski, P. (2000). Polyhedron, 19, 2083-2093.
- Sawka-Dobrowolska, W. (1985). Acta Crvst. C41, 84-86.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Xu, J. & Fu, N. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1223-1226.
- Xu, J., Ma, Y. & Duan, L. (2000). Heteroat. Chem. 11, 417-421.
- Zhang, X. D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, 02952-02954.

supplementary materials

Acta Cryst. (2007). E63, o4778 [doi:10.1107/S1600536807059168]

Ethyl [(n-butylammonio)(2-hydroxyphenyl)methyl]phosphonate

X. Zhang, C. Ge, X. Zhang and Q. Liu

Comment

The structure of the title compound,(I), is shown in Fig. 1. The interest of derivatives of aminophosphonic acids is focused on their ability to construction organic-inorganic porous supramolecular frameworks. Phosphonate derivatives have been studied by single-crystal X-ray structure analysis. For related literature, see (Kurzak *et al.*, 2000; Sawka-Dobrowolska,1985; Xu *et al.*, 2000; Xu & Fu, 2001). A three dimensional supramolecular network was formed by inter-molecular hydrogen bonds (Table 1, Fig.2).

Experimental

The target compound was synthesize according to the reported method (Zhang *et al.*., 2005). All chemicals were of reagent grade and commercially available, and were used without further purification. A mixture of salicylaldehyde (0.02 mol) and butylamine (1.97 ml) in ethanol (30 ml) was refluxed for 10 h. An ethanol solution (20 ml) of diethyl phosphonate (0.02 mol) was then added drop wise. The resulting solution was refluxed until a solid appeared. The solid product was filtered off, washed with ethanol and recrystallized from water to give (I) in 63% yield.

Refinement

Atom C11 of the *n*-butyl group and atoms C12 and C13 of the ethyl group are disordered over two sites: occupancies 0.80/0.20, 0.70/0.30 and 0.62/0.38, respectively. H-atoms were not included for the lesser occupied atoms. H atoms attached to the C atoms were placed in geometrically idealized positions and treated as riding atoms; C—H = 0.93–0.98 Å with $U_{iso}(H)=1.2U_{eq}$. The O—H and N—H hydrogen atoms were placed in calculated positions and treated as riding atoms: Distances O—H = 0.82 Å, with $U_{iso}(H)=1.5U_{eq}(O)$, and N—H = 0.90 Å with $U_{iso}(H)=1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level(arbitrary sphere for the H atoms).

Fig. 2. Two-dimensional structure of (I) formed by hydrogen bonds (viewed along 001 direction).

Ethyl [(n-butylammonio)(2-hydroxyphenyl)methyl]phosphonate

Crystal data	
C ₁₃ H ₂₂ NO ₄ P	Z = 16
$M_r = 287.29$	$F_{000} = 2464$
Tetragonal, I4 ₁ /a	$D_{\rm x} = 1.132 \ {\rm Mg \ m}^{-3}$
Hall symbol: -I4ad	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 21.896 (3) Å	Cell parameters from 744 reflections
b = 21.896 (3) Å	$\theta = 2.9 - 22.5^{\circ}$
c = 14.059 (2) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, yellow
$\gamma = 90^{\circ}$	$0.31 \times 0.25 \times 0.20 \text{ mm}$
$V = 6740.4 (16) \text{ Å}^3$	

Data collection

2986 independent reflections
1911 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.027$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.7^{\circ}$
$h = -26 \rightarrow 1$
$k = -1 \rightarrow 26$
$l = -16 \rightarrow 1$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.070$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.157P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.243$	$(\Delta/\sigma)_{max} = 0.001$

S = 1.04 $\Delta \rho_{max} = 0.54 \text{ e } \text{Å}^{-3}$ 2986 reflections $\Delta \rho_{min} = -0.50 \text{ e } \text{Å}^{-3}$ 184 parametersExtinction correction: none42 restraintsPrimary atom site location: structure-invariant direct
methodsSecondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
P1	0.94165 (4)	0.62363 (4)	0.79003 (8)	0.0553 (4)	
01	0.89072 (11)	0.66681 (11)	0.7711 (2)	0.0615 (7)	
O2	0.92802 (14)	0.56485 (13)	0.7277 (2)	0.0783 (9)	
03	1.00450 (12)	0.64563 (14)	0.7782 (2)	0.0750 (9)	
O4	0.91293 (13)	0.46901 (12)	0.9416 (3)	0.0818 (10)	
H4	0.9035	0.4340	0.9560	0.123*	
N1	0.95690 (13)	0.63817 (13)	0.9811 (2)	0.0552 (8)	
H1A	0.9960	0.6475	0.9679	0.066*	
H1B	0.9347	0.6725	0.9745	0.066*	
C1	0.93477 (15)	0.59188 (16)	0.9100 (3)	0.0531 (9)	
H1	0.9626	0.5569	0.9135	0.064*	
C2	0.87154 (16)	0.56846 (16)	0.9342 (3)	0.0537 (9)	
C3	0.86297 (17)	0.50615 (17)	0.9501 (3)	0.0589 (10)	
C4	0.80561 (18)	0.48414 (19)	0.9738 (3)	0.0715 (12)	
H4A	0.7998	0.4425	0.9835	0.086*	
C5	0.75756 (19)	0.5236 (2)	0.9828 (4)	0.0782 (13)	
Н5	0.7191	0.5086	0.9987	0.094*	
C6	0.76562 (18)	0.5856 (2)	0.9686 (3)	0.0782 (13)	
H6	0.7330	0.6123	0.9759	0.094*	
C7	0.82280 (17)	0.60747 (18)	0.9434 (3)	0.0672 (12)	
H7	0.8282	0.6490	0.9326	0.081*	
C8	0.9529 (2)	0.61727 (19)	1.0824 (3)	0.0695 (11)	
H8A	0.9109	0.6070	1.0973	0.083*	
H8B	0.9775	0.5808	1.0906	0.083*	
C9	0.9745 (3)	0.6652 (3)	1.1483 (4)	0.0982 (16)	

supplementary materials

H9A	0.9524	0.7028	1.1362	0.118*	
H9B	1.0175	0.6729	1.1373	0.118*	
C10	0.9650 (3)	0.6461 (3)	1.2496 (5)	0.194 (4)	
H10A	0.9914	0.6695	1.2914	0.232*	
H10B	0.9744	0.6031	1.2573	0.232*	
C11A	0.8971 (3)	0.6584 (3)	1.2739 (5)	0.290 (9)	0.80
H11A	0.8834	0.6943	1.2408	0.436*	
H11B	0.8928	0.6645	1.3412	0.436*	
H11C	0.8728	0.6240	1.2546	0.436*	
C11B	0.9637 (3)	0.6963 (3)	1.3273 (5)	0.32 (4)	0.20
C12A	0.9683 (3)	0.5207 (3)	0.7069 (5)	0.120 (3)	0.70
H12A	0.9780	0.4968	0.7630	0.144*	
H12B	1.0057	0.5379	0.6815	0.144*	
C12B	0.9414 (3)	0.5597 (3)	0.6272 (5)	0.143 (8)	0.30
C13A	0.9357 (3)	0.4809 (3)	0.6314 (5)	0.238 (8)	0.62
H13A	0.8933	0.4769	0.6477	0.356*	
H13B	0.9543	0.4412	0.6294	0.356*	
H13C	0.9392	0.5000	0.5701	0.356*	
C13B	0.9999 (3)	0.5229 (3)	0.6033 (5)	0.242 (14)	0.38

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0424 (6)	0.0494 (6)	0.0739 (7)	-0.0022 (4)	-0.0018 (4)	0.0012 (5)
01	0.0482 (14)	0.0513 (15)	0.0850 (19)	0.0009 (11)	-0.0106 (13)	0.0039 (13)
02	0.079 (2)	0.0618 (17)	0.094 (2)	0.0035 (15)	0.0061 (16)	-0.0180 (16)
03	0.0428 (15)	0.094 (2)	0.088 (2)	-0.0119 (14)	0.0022 (14)	0.0175 (17)
04	0.0612 (17)	0.0484 (16)	0.136 (3)	0.0045 (14)	0.0095 (17)	0.0238 (17)
N1	0.0455 (16)	0.0468 (16)	0.073 (2)	0.0004 (13)	-0.0009 (14)	0.0085 (15)
C1	0.0408 (18)	0.0426 (18)	0.076 (3)	0.0029 (14)	0.0007 (17)	0.0009 (17)
C2	0.0438 (19)	0.048 (2)	0.069 (2)	-0.0010 (15)	0.0018 (17)	0.0040 (17)
C3	0.048 (2)	0.047 (2)	0.082 (3)	-0.0004 (16)	-0.0022 (18)	0.0127 (19)
C4	0.055 (2)	0.058 (2)	0.101 (3)	-0.0114 (19)	-0.005 (2)	0.022 (2)
C5	0.045 (2)	0.089 (3)	0.100 (3)	-0.016 (2)	0.003 (2)	0.019 (3)
C6	0.045 (2)	0.080 (3)	0.110 (4)	0.008 (2)	0.007 (2)	0.008 (3)
C7	0.048 (2)	0.053 (2)	0.101 (3)	0.0011 (17)	0.004 (2)	0.007 (2)
C8	0.070 (3)	0.064 (2)	0.075 (3)	-0.006 (2)	0.002 (2)	0.009 (2)
C9	0.106 (4)	0.112 (4)	0.076 (3)	-0.011 (3)	-0.010 (3)	-0.005 (3)
C10	0.230 (8)	0.185 (7)	0.167 (6)	-0.008 (7)	-0.023 (6)	-0.032 (6)
C11A	0.309 (12)	0.283 (12)	0.279 (12)	-0.008 (9)	0.025 (9)	-0.036 (9)
C11B	0.32 (4)	0.32 (4)	0.32 (4)	-0.002 (10)	-0.001 (10)	-0.007 (10)
C12A	0.116 (6)	0.104 (5)	0.140 (6)	0.022 (5)	0.007 (5)	-0.020 (5)
C12B	0.153 (12)	0.135 (11)	0.143 (11)	-0.011 (9)	0.015 (9)	-0.008 (9)
C13A	0.249 (12)	0.222 (11)	0.241 (11)	0.016 (9)	0.006 (9)	-0.064 (9)
C13B	0.247 (16)	0.248 (17)	0.231 (16)	0.004 (10)	-0.003 (10)	0.001 (10)
	<u>^</u>					

Geometric parameters (Å, °)

Geometrice parameters (11,)			
P1—O3	1.468 (3)	С6—Н6	0.9300

P1—O1	1.486 (3)	С7—Н7	0.9300
P1—O2	1.586 (3)	C8—C9	1.478 (7)
P1—C1	1.830 (4)	C8—H8A	0.9700
O2—C12A	1.340 (6)	С8—Н8В	0.9700
O2—C12B	1.448 (7)	C9—C10	1.499 (8)
O4—C3	1.368 (4)	С9—Н9А	0.9700
O4—H4	0.8200	С9—Н9В	0.9700
N1—C8	1.498 (5)	C10—C11A	1.5499
N1—C1	1.504 (5)	C10—H10A	0.9700
N1—H1A	0.9000	C10—H10B	0.9700
N1—H1B	0.9000	C11A—H11A	0.9600
C1—C2	1.515 (5)	C11A—H11B	0.9600
C1—H1	0.9800	C11A—H11C	0.9600
C2—C7	1.373 (5)	C12A—C13A	1.5481
C2—C3	1.395 (5)	C12A—H12A	0.9700
C3—C4	1.386 (5)	C12A—H12B	0.9700
C4—C5	1.367 (6)	C12B—C13B	1.5498
C4—H4A	0.9300	C13A—H13A	0.9600
C5—C6	1.383 (6)	С13А—Н13В	0.9600
С5—Н5	0.9300	C13A—H13C	0.9600
С6—С7	1.387 (5)		
O3—P1—O1	118.33 (17)	С6—С7—Н7	119.6
O3—P1—O2	112.34 (18)	C9—C8—N1	111.1 (4)
O1—P1—O2	106.03 (17)	С9—С8—Н8А	109.4
O3—P1—C1	107.84 (16)	N1—C8—H8A	109.4
O1—P1—C1	110.18 (16)	С9—С8—Н8В	109.4
O2—P1—C1	100.70 (17)	N1—C8—H8B	109.4
C12A—O2—C12B	66.3 (3)	H8A—C8—H8B	108.0
C12A—O2—P1	125.6 (4)	C8—C9—C10	110.7 (5)
C12B—O2—P1	124.4 (3)	С8—С9—Н9А	109.5
C3—O4—H4	109.5	С10—С9—Н9А	109.5
C8—N1—C1	114.0 (3)	С8—С9—Н9В	109.5
C8—N1—H1A	108.7	С10—С9—Н9В	109.5
C1—N1—H1A	108.7	Н9А—С9—Н9В	108.1
C8—N1—H1B	108.7	C9—C10—C11A	107.1 (3)
C1—N1—H1B	108.7	C9—C10—H10A	110.3
H1A—N1—H1B	107.6	C11A—C10—H10A	110.3
N1—C1—C2	111.9 (3)	C9—C10—H10B	110.3
N1—C1—P1	109.3 (2)	C11A—C10—H10B	110.3
C2—C1—P1	114.2 (2)	H10A-C10-H10B	108.6
N1—C1—H1	107.0	C10-C11A-H11A	109.5
C2—C1—H1	107.0	C10—C11A—H11B	109.5
P1—C1—H1	107.0	H11A—C11A—H11B	109.5
C7—C2—C3	119.2 (3)	C10—C11A—H11C	109.5
C7—C2—C1	121.4 (3)	H11A—C11A—H11C	109.5
C3—C2—C1	119.3 (3)	H11B—C11A—H11C	109.5
O4—C3—C4	122.6 (3)	O2—C12A—C13A	104.6 (3)
O4—C3—C2	117.4 (3)	O2—C12A—H12A	110.8
C4—C3—C2	120.0 (3)	C13A—C12A—H12A	110.8

supplementary materials

C5—C4—C3	120.0 (4)	O2—C12A—H12B	110.8
C5—C4—H4A	120.0	C13A—C12A—H12B	110.8
C3—C4—H4A	120.0	H12A—C12A—H12B	108.9
C4—C5—C6	120.6 (4)	O2—C12B—C13B	114.8 (3)
С4—С5—Н5	119.7	C12A—C13A—H13A	109.5
С6—С5—Н5	119.7	C12A—C13A—H13B	109.5
C5—C6—C7	119.4 (4)	H13A—C13A—H13B	109.5
С5—С6—Н6	120.3	C12A—C13A—H13C	109.5
С7—С6—Н6	120.3	H13A—C13A—H13C	109.5
C2—C7—C6	120.7 (4)	H13B—C13A—H13C	109.5
С2—С7—Н7	119.6		
O3—P1—O2—C12A	33.7 (5)	C7—C2—C3—O4	-179.0 (4)
O1—P1—O2—C12A	164.4 (4)	C1—C2—C3—O4	-0.9 (6)
C1—P1—O2—C12A	-80.8 (5)	C7—C2—C3—C4	0.9 (6)
O3—P1—O2—C12B	-50.1 (4)	C1—C2—C3—C4	179.0 (4)
O1—P1—O2—C12B	80.6 (4)	O4—C3—C4—C5	178.9 (4)
C1—P1—O2—C12B	-164.6 (4)	C2—C3—C4—C5	-1.0 (7)
C8—N1—C1—C2	52.0 (4)	C3—C4—C5—C6	0.0 (7)
C8—N1—C1—P1	179.5 (3)	C4—C5—C6—C7	1.1 (8)
O3—P1—C1—N1	52.3 (3)	C3—C2—C7—C6	0.2 (6)
O1—P1—C1—N1	-78.2 (2)	C1—C2—C7—C6	-177.9 (4)
O2—P1—C1—N1	170.2 (2)	C5—C6—C7—C2	-1.2 (7)
O3—P1—C1—C2	178.6 (3)	C1—N1—C8—C9	-179.2 (4)
O1—P1—C1—C2	48.1 (3)	N1-C8-C9-C10	174.9 (4)
O2—P1—C1—C2	-63.6 (3)	C8—C9—C10—C11A	-80.4 (4)
N1—C1—C2—C7	57.4 (5)	C12B—O2—C12A—C13A	-54.1 (2)
P1—C1—C2—C7	-67.4 (4)	P1	-170.5 (2)
N1—C1—C2—C3	-120.7 (4)	C12A—O2—C12B—C13B	-16.6 (3)
P1—C1—C2—C3	114.5 (3)	P1	101.4 (3)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H4···O1 ⁱ	0.82	1.90	2.651 (4)	153
N1—H1B····O3 ⁱⁱ	0.90	1.81	2.709 (4)	173
N1—H1A…O1 ⁱⁱⁱ	0.90	1.92	2.766 (4)	156
$C_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$			14 17/4	

Symmetry codes: (i) y+1/4, -x+5/4, z+1/4; (ii) y+1/4, -x+7/4, -z+7/4; (iii) -y+7/4, x-1/4, -z+7/4.

